Solutions to Electron Configurations Practice Worksheet

In the space below, write the unabbreviated electron configurations of the following elements:

- 1. sodium $1s^22s^22p^63s^1$
- **2.** magnesium <u>1s²2s²2p⁶3s²</u>
- **3.** iron $1s^22s^22p^63s^23p^64s^23d^6$
- **4.** potassium $1s^22s^22p^63s^23p^64s^1$
- **5.** selenium $1s^22s^22p^63s^23p^64s^23d^{10}4p^4$

In the space below, write the abbreviated electron configurations of the following elements:

- **6.** cobalt [Ar] $4s^23d^7$
- **7.** silver [Kr] $5s^24d^9$
- 8. tellurium [Kr] 5s²4d¹⁰5p⁴
- **9.** radium [Rn] 7s²
- **10.** lawrencium [Rn] 7s²5f¹⁴6d¹

Determine what elements are denoted by the following electron configurations:

- **11.** 1s²2s²2p⁶3s²3p⁴ Sulfur
- **12.** 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s¹ rubidium
- **13.** [Kr] $5s^24d^{10}5p^3$ antimony
- **14.** [Xe] 6s²4f¹⁴5d⁶ <u>osmium</u>
- **15.** [Rn] $7s^25f^{11}$ <u>einsteinium</u>

Explain what is wrong with the following electron configurations:

- **16.** $1s^22s^22p^63s^23p^64s^24d^{10}4p^6$ The 3d level should come after the 4s level.
- 17. 1s²2s²2p⁶3s³3d⁵ The 3s level cannot hold 3 electrons.

Solutions to "Electron Configurations"

- chlorine
 calcium
 gallium
- **4.** I used the principal quantum number on the outermost electrons to determine the row on the periodic table where the element is located. I then counted the electrons, starting from the left side of that row until I reached the number of electrons that was indicated in the configuration.
- phosphorus
 calcium
 scandium
- **8.** iodine **9.** argon **10.** lead

Electron Configurations - Solutions

Note: The electron configurations in this worksheet assume that lanthanum (La) is the first element in the 4f block and that actinium (Ac) is the first element in the 5f block. If your periodic table doesn't agree with this, your answers for elements near the f-orbitals may be slightly different.

- 1) oxygen 1s²2s²2p⁴
- 2) sodium 1s²2s²2p⁶3s¹
- 3) iron 1s²2s²2p⁶3s²3p⁶4s²3d⁶
- 4) bromine 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁵
- 5) barium $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^2$
- 6) nitrogen 1s²2s²2p³
- 7) chorine $1s^22s^22p^63s^23p^5$
- 8) argon $1s^22s^22p^63s^23p^6$
- 9) cobalt [Ar] $4s^23d^7$
- 10) silver **[Kr]** 5s²4d⁹
- 11) tellurium [Kr] $5s^24d^{10}5p^4$
- 12) iodine [Kr] $5s^24d^{10}5p^5$
- 13) cesium [Xe] 6s¹
- 14) $1s^22s^22p^63s^23p^4$ sulfur
- 15) $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1$ rubidium
- 16) $[Kr] 5s^2 4d^{10}5p^3$ antimony
- 17) [Xe] $6s^24f^{14}5d^6$ osmium
- 18) [Xe] $6s^2$ barium

These electron configurations have mistakes, determine what is wrong.

- 19) 1s²2s²2p⁶3s²3p⁶4s²4d¹⁰4p⁵ not valid (take a look at "4d")
- 20) $1s^22s^22p^63s^23d^5$ not valid (3p comes after 3s)
- 21) [Ra] 7s²5f⁸ not valid (radium isn't a noble gas)
- 22) [Xe] not valid (an element can't be its own electron configuration)